#science attraction Body Worlds reconsidered by Samuel Redman – @ConversationUS

Reconsidering Body Worlds: why do we still flock to exhibits of dead human beings?

Samuel Redman, University of Massachusetts Amherst

When Dr. Gunther von Hagens started using “plastination“ in the 1970s to preserve human bodies, he likely did not anticipate the wild success of the Body Worlds exhibitions that stem from his creation. Body Worlds has since hosted millions of visitors to its exhibits, including six spin-offs. The offshoots include a version on vital organs and another featuring plastinated animal remains. The process replaces natural bodily fluids with polymers that harden to create odorless and dry “specimens.”

Frozen in place, plastinated remains in the exhibits are rigidly posed – both for dramatic effect and to illustrate specific bodily features. Over 40 million museum visitors have encountered these exhibitions in more than 100 different locations worldwide. Even copycat exhibits have taken off, eschewing accredited museums in favor of places like the Luxor Hotel and Casino in Las Vegas.

But Body Worlds – though seemingly an entirely modern phenomenon only made possible with futuristic plastic technology – emerges from a long tradition of popular exhibits featuring actual and simulated human remains. What continues to draw so many people to human body exhibitions – even today?

Early exhibits of human bodies

For nearly as long as physicians and anatomists have attempted to understand the body, they have attempted to preserve, illustrate and present it. Cabinets of curiosities displayed in the homes of European nobility in the 16th century frequently included human skulls. As civic museums emerged in cities throughout Europe and the United States, some began to formally organize collections around anatomical questions.

The Hyrtl Skull Collection at the Mütter Museum continues to be displayed together. Recently, the museum organized a ‘Save Our Skulls’ fundraising campaign in order to better conserve the collection.
George Widman, 2009, for the Mütter Museum of The College of Physicians of Philadelphia

Medical museums were often more interested in pathologies – abnormal medical conditions or disease. They also collected thousands of skulls and bones, attempting to address basic questions about race. Early on, medical museums were generally closed to the public, instead focusing on training medical students through hands-on experience with specimens. Almost reluctantly, they began opening their doors to the public. Once they did, they were surprised by the relatively large number of visitors curiously entering their galleries.

Medical museums were not the sole institutions housing and displaying remains, however. Collections aimed more squarely at the general public often included such items as well. The Army Medical Museum, for instance, located along the National Mall, exhibited human remains between 1887 and the 1960s (living on as the National Museum of Health and Medicine). The Smithsonian’s National Museum of Natural History built its own large body collections, especially during the early 20th century. Popular exhibits at the American Museum of Natural History exhibited human remains in New York City just steps from Central Park.

Notable exhibits featuring human remains or innovative reproductions were also wildly popular at World’s Fairs, including Chicago (1893), St. Louis (1904) and San Diego (1915), among many others. People crowded galleries even as these exhibits proved vexing to critics.

Troubling transition from person to specimen

In the quest to rapidly build collections, remains were sometimes collected under highly questionable ethical circumstances. Bodies were removed from graves and sold, gathered from hospitals near exhibitions reminiscent of human zoos, and rounded up haphazardly from battlefields.

In the United States, the human body in the late 19th and early 20th century was racialized in almost every respect imaginable. Many people became obsessed with the supposed differentiations between Native Americans, African Americans and European Americans – occasionally stretching claims into rigid hierarchies of humankind. The exhibitions dehumanized bodies by casting them as observable data points rather than actual human beings.

Some exhibits blended medical science and racial science in a bizarrely inaccurate manner. Medical doctors supported eugenics groups organizing temporary exhibits comparing hair and skulls from different apes and nonwhite humans, underscoring popular notions about the supposedly primitive nature of those outside of Western civilization. To our modern eyes, these attempts are obviously stained by scientific racism.

Eventually, the racialized science that had led to collecting thousands of skulls and other bones from people around the world came under increased scrutiny. The comparative study of race – dominating many early displays of human remains – was largely discredited.

Indigenous activists, tired of seeing their ancestors viewed as “specimens,” also began pushing back against their display. Some exhibit planners began seeking other methods – including more sophisticated models – and exhibiting actual human remains became less prominent.

By midcentury it was less common to display actual human remains in museum exhibits. The occasional Egyptian mummy notwithstanding, museum remains were largely relegated behind the scenes to bone rooms.

Specimen exhibits fade, temporarily

With largely unfounded concern, museum administrators, curators and other critics worried audiences would be disgusted when shown vivid details about human anatomy. Gradually, as medical illustrations became better and easier to reproduce in textbooks, the need for demonstrations with real “specimens” seemed to dissipate.

First displayed at a World’s Fair in Chicago in 1933, see-through models of the human body became a favorite attraction at medical exhibits in years to come. Models replicated actual human body parts rather than displaying them in preserved form. Exhibits were sometimes animated with light shows and synchronized lectures.

Later, in the 1960s, new transparent models were created for popular education. Eventually, some of the many transparent medical models wound up in science museums. Although popular, it remains unclear how effective the models were in either teaching visitors or inspiring them to learn more about the human body.

Over the years, methods for teaching anatomy shifted. Many medical museums even closed permanently. Those that could not dispose of collections by destroying them donated or sold them. Human body exhibits generally faded from public consciousness.

But after decades of declining visitor numbers, something surprising started happening at one of the nation’s most important medical museums. The Mütter Museum’s displays continued to draw heavily from its human remains collections even as similar institutions moved away from such exhibits. From the mid-1980s to 2007, the number of visitors entering the Mütter’s galleries grew from roughly 5,000 visitors per year to more than 60,000. Today, the museum is the most visited small museum in Philadelphia, hosting over 130,000 visitors annually.

When Body Worlds began touring museums in the mid-1990s, it tapped into a curiosity in the U.S. that has probably always existed – a fascination with death and the human body.

Adding a gloss of scientization to the dead

People are very often unsettled by seeing what were once living, breathing, human beings – people with emotions and families – turned into scientific specimens intended for public consumption. Despite whatever discomfort emerges, however, the curious appeal of medicalized body displays at public museums lingers, enough so to make them consistently appealing as fodder for popular exhibitions.

Body Worlds states “health education” is its “primary goal,” elaborating that the bodies in exhibits are posed to suggest that we as humans are “naturally fragile in a mechanized world.”

The exhibits are partially successful in achieving that mission. In tension with the message about human fragility, though, is the desire to preserve them by preventing their natural decay through technology.

With public schools cutting health programs in classrooms around the United States, it stands to reason people might seek this kind of body knowledge elsewhere. Models are never quite as uniquely appealing as actual flesh and bone.

But while charged emotional responses have the potential to heighten curiosity, they can also inhibit learning. While museum administrators voiced concern that visitors would be horrified viewing actual human bodies on exhibit, the public has instead proven to have an almost insatiable thirst for seeing scientized dead.

In the face of this popularity, museums must fully consider the special implications and problems with these exhibitions when choosing to display human bodies.

One basic concern relates to the exact origins of these bodies. Criticisms elicited an official response from von Hagens. Major ethical differences exist between exhibitions including human remains where permission has been granted in advance by the deceased or through descendants and museum displays revealing bodies of individuals offered no choice in the matter.

Spiritually sacred objects and the remains of past people present unique issues which must be dealt with sensitively and on an individual basis. Cultural and historical context is important. Consulting with living ancestors is critical.

Exhibitors also need to do more to put these displays into greater historical context for visitors. Without it, visitors might mistake artfully posed cadavers as art pieces, which they most assuredly are not.

These are all issues we will likely be grappling with for years to come. If past history is suggestive of future trends, visitors will continue to be drawn to these exhibits as long as the human body remains mysterious and alluring.

The Conversation

Samuel Redman, Assistant Professor of History, University of Massachusetts Amherst

This article was originally published on The Conversation. Read the original article.

Problems and solutions in #science education and postdoc training @NatureNews

This week Nature has a number of editorials, commentaries, and news features examining graduate education and postdoctoral training. They are all extremely interesting and make TONS of good points!

My favorite, in part because I am living it, is a piece by Jessica Polka (@jessicapolka) and Viviane Callier (@vcallier)- Fellowships are the future. I have to be honest, I could not agree more with this article… even if I wrote it myself. A must READ!!

If postdocs receive greater independence, PIs will lose some control, so they may have to find other resources to conduct their research. But this could be good for science: having postdocs strike out away from the beaten path will bring fresh ideas and approaches to the table. For both of us, getting a fellowship enabled us to cut a path that was separate from the dominant research area in each of our mentors’ labs. The experience of trying to define a new scientific direction has been most useful for us, even as our paths diverge.

Next an editorial – Make the Most of PhDs – highlights the need for graduate education reform, for the good of science and graduates.

The number of people with science doctorates is rapidly increasing, but there are not enough academic jobs for them all. Graduate programmes should be reformed to meet students’ needs.

Last, Julie Gould’s news feature – How to build a better PhD – addresses the problems in scientific graduate education and how to improve it to build better PhDs.

How bad is double-dipping?? Paul Dawson explains @US_Conversation

Is double-dipping a food safety problem or just a nasty habit?

Paul Dawson, Clemson University

What do you do when you are left with half a chip in your hand after dipping? Admit it, you’ve wondered whether it’s OK to double dip the chip.

Maybe you’re the sort who dips their chip only once. Maybe you look around the room before loading your half-eaten chip with a bit more dip, hoping that no one will notice.

If you’ve seen that classic episode of Seinfeld, “The Implant,” where George Costanza double-dips a chip at a wake, maybe you’ve wondered if double-dipping is really like “putting your whole mouth right in the dip!

‘You doubled-dipped the chip.’

But is it, really? Can the bacteria in your mouth make it onto the chip then into the dip? Is this habit simply bad manners, or are you actively contaminating communal snacks with your particular germs?

This question intrigued our undergraduate research team at Clemson University, so we designed a series of experiments to find out just what happens when you double-dip. Testing to see if there is bacterial transfer seems straightforward, but there are more subtle questions to be answered. How does the acidity of the dip affect bacteria, and do different dips affect the outcome? Members of the no-double-dipping enforcement squad, prepare to have your worst, most repulsive suspicions confirmed.

Start with a cracker

Presumably some of your mouth’s bacteria transfer to a food when you take a bite. But the question of the day is whether that happens, and if so, how much bacteria makes it from mouth to dip. Students started by comparing bitten versus unbitten crackers, measuring how much bacteria could transfer from the cracker to a cup of water.

We found about 1,000 more bacteria per milliliter of water when crackers were bitten before dipping than solutions where unbitten crackers were dipped.

In a second experiment, students tested bitten and unbitten crackers in water solutions with pH levels typical of food dips (pH levels of 4, 5 and 6, which are all toward the more acidic end of the pH scale). They tested for bacteria right after the bitten and unbitten crackers were dipped, then measured the solutions again two hours later. More acidic solutions tended to lower the bacterial numbers over time.

The time had come to turn our attention to real food.

But what about the dip?

We compared three kinds of dip: salsa, chocolate and cheese dips, which happen to differ in pH and thickness (viscosity). Again, we tested bacterial populations in the dips after already-bitten crackers were dipped, and after dipping with unbitten crackers. We also tested the dips two hours after dipping to see how bacterial populations were growing.

We tested All Natural Tostitos Chunky Hot Salsa (pH 4), Genuine Chocolate Flavor Hershey’s Syrup (pH 5.3) and Fritos Mild Cheddar Flavor Cheese Dip (pH 6.0).

So, how dirty is your dip? We found that in the absence of double-dipping, our foods had no detectable bacteria present. Once subjected to double-dipping, the salsa took on about five times more bacteria (1,000 bacteria/ml of dip) from the bitten chip when compared to chocolate and cheese dips (150-200 bacteria/ml of dip). But two hours after double-dipping, the salsa bacterial numbers dropped to about the same levels as the chocolate and cheese.

After two hours, levels of bacteria in the salsa were similar to levels in the cheese and chocolate dips.
Paul Dawson, Author provided

We can explain these phenomena using some basic food science. Chocolate and cheese dips are both pretty thick. Salsa isn’t as thick. The lower viscosity means that more of the dip touching the bitten cracker falls back into the dipping bowl rather than sticking to the cracker. And as it drops back into the communal container, it brings with it bacteria from the mouth of the double-dipper.

Salsa is also more acidic. After two hours, the acidity of the salsa had killed some of the bacteria (most bacteria don’t like acid). So it’s a combination of viscosity and acidity that will determine how much bacteria gets into the dip from double-dipping. As a side note about party hosting: cheese dip will run out faster than salsa since more of the cheese sticks to the cracker or chip on each dip. That could reduce the chances of people double-dipping. And yes, this is something we discovered during the experiment.

Should I freak out about double-dipping?

Double-dipping can transfer bacteria from mouth to dip, but is this something you need to worry about?

Anywhere from hundreds to thousands of different bacterial types and viruses live in the human oral cavity, most of which are harmless. But some aren’t so good. Pneumonic plague, tuberculosis, influenza virus, Legionnaires’ disease and severe acute respiratory syndrome (SARS) are known to spread through saliva, with coughing and sneezing aerosolizing up to 1,000 and 3,600 bacterial cells per minute. These tiny germ-containing droplets from a cough or a sneeze can settle on surfaces such as desks and doorknobs. Germs can be spread when a person touches a contaminated surface and then touches their eyes, nose or mouth.

That’s why the Centers for Disease Control and Prevention strongly recommends covering the mouth and nose when coughing and sneezing to prevent spreading “serious respiratory illnesses like influenza, respiratory syncytial virus (RSV), whooping cough, and severe acute respiratory syndrome (SARS).” With that in mind, there may be a concern over the spread of oral bacteria from person to person thanks to double-dipping. And a person doesn’t have to be sick to pass on germs.

One of the most infamous examples of spreading disease while being asymptomatic is household cook Mary Mallon (Typhoid Mary), who spread typhoid to numerous families in 19th-century New England during food preparation. Science has left unanswered whether she was tasting the food as she went along and, in effect, double-dipping. Typhoid Mary is obviously an extreme example, but your fellow dippers might very well be carrying cold or flu germs and passing them right into the bowl you’re about to dig into.

If you detect double-dippers in the midst of a festive gathering, you might want to steer clear of their favored snack. And if you yourself are sick, do the rest of us a favor and don’t double-dip.

The Conversation

Paul Dawson, Professor of Food Science, Clemson University

This article was originally published on The Conversation. Read the original article.

CauseScience Friday -Nov 20th #selfie #cellfie #science

Happy Friday (or should we say, Fri-YAY) from CauseScience!

psgurel– Today I am miniprepping! If you remember last week, I was doing PCR to get a specific DNA construct. After doing PCR, there are several steps before you have nice clean DNA. For the DNA I’m using (plasmid DNA) the final step is to extract your DNA from bacteria.  Lucky for us, several companies make “miniprep” kits that make this process super quick and easy. It takes about 30min, and then you have (hopefully) nice, clean DNA!

IMG_3159

crestwind24– This is crazy! I am also doing mini preps of DNA this morning!! SAMESIES!! Preparing DNA is a major part of most labs, as made obvious by todays post. I am making DNA that will label synapses in neurons in C. elegans. Once I have the DNA that I want, we will inject it into developing embryos, and then I will have transgenic worms!! Hopefully with glowing synapses!! This will allow me to visualize connections between different neurons.

IMG_3648

CauseScience Friday… more like mini prep Friday!!!