@LamarSmithTX21 wrong on climate change… AGAIN. #tired @HouseScience @factcheckdotorg

scichecksquare_4-e1430162915812Representative Lamar Smith heads the House Committee on Science, Space, and Technology –  and is essentially as anti-science as you can get when it comes to climate change (see our many posts about Smith here). This week FactCheck.org gives Lamar Smith the SCICHECK – and no one should be surprised by the results.

Rep. Lamar Smith at a recent hearing claimed a new study published in the journal Nature Climate Change “confirms the halt in global warming.” It doesn’t. In fact, the authors of the paper write, “We do not believe that warming has ceased.”

At the March 16 House hearing, Smith also continued to criticize the Science paper. He said the paper was “prematurely published,” but the editor-in-chief of Science told us Smith’s claim is “baseless and without merit.” Smith also said that the NOAA researchers used “controversial methods” in their study, but the authors of the Nature paper cited by Smith said this wasn’t the case. In fact, they cite the Science paper as having “high scientific value.”

Overall, each study asked different scientific questions, the answers to which can both remain valid and correct, according to the Nature authors themselves.

The SCICHECK also goes on to remind us of the many other times Lamar Smith was way off base when it came to climate science… a trend even an untrained scientist like Smith should be able to recognize.

This is not the first time Smith, a Republican from Texas, has made false statements about climate science and the so-called “Karl study,” named after Thomas R. Karl, director of NOAA’s National Centers for Environmental Information and the Science paper’s lead author.

As we’ve written before, Smith claimed in October 2015 that “climate data has clearly showed no warming for the past two decades” and that NOAA scientists “altered the data” to get the results they presented in the Science study.

Check the whole article for the latest SCICHECK of Lamar Smith!!!

Measles and Pertussis outbreaks tied to vaccine refusal @NIHDirector #science

Parents have a responsibility not only to their own children, but to their communities—it’s only by achieving a very high level of population immunity that outbreaks can be prevented. Vaccination is particularly crucial for children with cancer and other diseases that cause immunosuppression. They cannot be vaccinated safely, but are at high risk of severe consequences if they are infected—and, thus, they depend on the community’s so-called “herd immunity” for protection against a potentially fatal illness.

While some parents continue to express concern about a possible link between vaccines and autism spectrum disorders, the original report claiming this connection has been debunked and retracted.  A large number of carefully designed follow up studies have been carried out, and the overwhelming weight of scientific evidence shows no evidence for such a link. That’s why it continues to be so important to get the word out to parents: Have your kids vaccinated.

Barriers For Women Today May Be Less Visible, But Not Less Real

YES, THIS IS STILL AN ISSUE. We discuss frequently the inequalities for women in science (most recently, here, here, here and here). This isn’t a thing of the past, but very much a reality. Read the entire NPR article:

Last month, I wrote a review of Eileen Pollack’s The Only Woman in the Room, a memoir about Pollack’s experiences as a physics major at Yale in the 1970s.

It’s no secret that women are still underrepresented in science and engineering, and my own piece cited a statistic from 2015: that women make up fewer than 25 percent of physics majors today.

So I was surprised by a theme that emerged in comments to the article, both on Facebook and on 13.7.

“Outdated story,” claimed the first comment on NPR’s Facebook page. “Those poor women being held back by……..NOTHING…..” wrote a reader on the blog. Some readers seemed to dismiss women’s underrepresentation as a thing of the past, or an issue of women’s own making. (Though one astute reader pointed out: “Funny, but none of the comments saying that this isn’t an actual issue and nothing’s holding women in physics back were written by women in physics.”)

In fact, women do continue to be underrepresented in a variety of fields, including many in science and engineering. And the barriers they face are (still) very real. How, then, could anyone believe otherwise?

It’s difficult to identify the sources of people’s beliefs and, in this case, they’re likely to be variable and complex. But here are a few reasons why the challenges faced by women today may be less apparent, if no less pervasive, than they were in the past.

First, much of today’s bias is implicit, not explicit. Women are much less likely to betold that they don’t belong in the lab, and people may be less likely to believe that they don’t. But both men and women are influenced by implicit biases — stereotypes and associations that can subtly and unconsciously influence their decisions and evaluations regarding others and themselves. For instance, one recent study found that both male and female participants were twice as likely to select a man over a woman to complete a mathematical task, even when they had no evidence that the man would perform the task better.

Another study, published earlier this year, found that both male and female undergraduates were more likely to explain a woman’s science-related setback than a man’s by appeal to factors about that person (e.g., “Lisa was ‘let go’ from her research assistant job because she messed up an experiment”). The reverse pattern was true for men’s setbacks — the undergraduates were more likely to explain them by appeal to factors about the situation (e.g., “Steve was ‘let go’ from his research assistant job because there were budget cuts”).

These examples of implicit bias may seem inconsequential, but they’re only two among dozens, and they add up over the course of an individual’s education and career.

A second reason contemporary challenges for women may go unnoticed is because they’re often not a consequence of sex or gender identity per se, but instead an interaction between caregiving responsibilities and the structure of the workplace. Women with children, in particular, suffer from what some have dubbed a “motherhood penalty,” with negative effects on income, career advancement, and perceived competence relative to both fathers and women without children. Caregiving responsibilities can lead women to favor jobs with greater flexibility (which typically come with lower pay and fewer opportunities for career advancement), to forego professionally valuable travel, and to pass up opportunities that could involve relocation when it doesn’t work well for their families. These systematic costs for women are a function of gender-based caregiving norms and aspects of the workplace that should arguably change, but they don’t necessarily reflect discrimination againstwomen.

Finally, people may assume that the number of women entering the science “pipeline” is an indication of the future; that women are underrepresented at higher ranks due to past — not present — barriers. For instance, the American Institute of Physics reportsthat in 2010, the percentage of physics faculty members who were women was 22 percent at the assistant professor level, 15 percent at the associate professor level, and only 8 percent at the full professor level. This could reflect an effect of age: The full professors (on average) entered physics at a time when women faced more serious discrimination than that faced by women a few years later, when the associate professors were entering the field, and so on. By this logic, achieving gender parity at the undergraduate level solves the problem.

Unfortunately, this idea isn’t backed by the data. While there are indeed “cohort effects” — with women in more senior positions more likely to have experienced factors that were more prevalent in the past — there has also historically been a leaky pipeline, with women dropping out of science degrees and careers more often than men at every stage, as well as a glass ceiling, with genuine barriers to advancement, recognition, and power at the top.

So to the commentator who wrote “outdated story,” I say: I wish that were so. Unfortunately, women continue to be underrepresented in a variety of important and prestigious fields, and they continue to face serious barriers. Many of today’s barriers may be less visible than those of the past, but this comes with a new kind of challenge: that people will fail to acknowledge they’re there.


Tania Lombrozo is a psychology professor at the University of California, Berkeley. She writes about psychology, cognitive science and philosophy, with occasional forays into parenting and veganism. You can keep up with more of what she is thinking on Twitter: @TaniaLombrozo

Jupiter next to full moon Mar 21 and 22

Be sure to check out Jupiter right next to the full moon tonight and tomorrow night!

mooooooon-and-jup_1458600081204_1047591_ver1.0.jpg

The position of the Moon and Jupiter in the night sky on Monday, March 21st, as presented via the Sky Guide, Fifth Star Labs.

Looking to the East-Southeast direction, the waxing gibbous moon will appear to be closest to Jupiter throughout the evening of Monday, March 21st. This will make Jupiter look like the “moon’s moon” as they both travel upward and westward in the night sky. This pairing is only viewable from our planet though. In reality, Jupiter is more than 300x the mass of Earth, and the Moon is about 25% the size of Earth.  Even comparing our moon to Jupiter’s Galilean moons, three of Jupiter’s moons are larger than our own.

If you’re on the west coast:

With an amateur telescope you could spot the double shadow on Jupiter as the two moons cross in front of it. The best time to notice these shadows will be from 9:23PM to 11:31PM Pacific Time. Leading the shadows across Jupiter are the moons themselves, which are much harder to see since they will be the same brightness as Jupiter. If you’re glancing at the shadows of the moon, you’ll also notice the Great Red Spot rotating across the planet around 10:34PM Pacific Time.