#Science and #Religion – Pope’s encyclical supports the science of climate change and calls for revolution!

Religion and science… in harmony? The Pope and the Vatican have taken a stand with scientists against climate change. The encyclical released today will hopefully have huge impacts on the discussion surrounding climate change, but at the very least will make climate change a major topic of discussion in politics and religion. The church’s stand is already causing tension in US politics, with anti-science Republicans chastising the Pope for his stance.  While the Pope and Catholic Church have a history of supporting the science of man-made climate change, this makes climate change a part of the church’s official teaching. Very exciting times! And who thought religion, especially the Catholic Church, would be fighting alongside scientists??

Lots of commentary about this news all over the internet, here are a bunch from The Conversation!!

[tweet https://twitter.com/CauseScience1/status/611638724431073280] [tweet https://twitter.com/CauseScience1/status/611638701999955968] [tweet https://twitter.com/CauseScience1/status/611638682802626562] [tweet https://twitter.com/CauseScience1/status/611638661541679104] [tweet https://twitter.com/CauseScience1/status/611638621121212417]

Awesome @radiolab episode on CRISPR and Cas9 DNA editing!! #science

Check out this podcast episode from Radiolab focusing on CRISPR and its potential applications.

[tweet https://twitter.com/CauseScience1/status/611576799013769217]

Out drinking with a few biologists, Jad finds out about something called CRISPR. No, it’s not a robot or the latest dating app, it’s a method for genetic manipulation that is rewriting the way we change DNA. Scientists say they’ll someday be able to use CRISPR to fight cancer and maybe even bring animals back from the dead. Or, pretty much do whatever you want. Jad and Robert delve into how CRISPR does what it does, and consider whether we should be worried about a future full of flying pigs, or the simple fact that scientists have now used CRISPR to tweak the genes of human embryos.

#Science Quotable: Rachel Maddow – Be a Scientist!! #BeAScientist #scienceissocool

waterrm

Turns out if you want to find out where the water is on Earth, gravity can help. Specifically, if you want to find out where water is below the Earth’s surface, satellites can use the force of gravity to figure that out… from space. Which is SO COOL.

If you don’t know what you want to be when you grow up, be a scientist. this stuff is so cool.

-Rachel Maddow introducing new studies about NASA research about water aquifers.

Check out the whole segment from the Rachel Maddow Show – New research sounds alarm on global water supply. It contains tons of other awesome science!

Jay Famiglietti, senior water scientist at the NASA Jet Propulsion Laboratory, talks with Rachel Maddow about new research using satellites to detect underground water around the world and finding startling deficiencies in the global water supply.

NASA video shows Tropical Storm Bill blowing into Texas!!! #weather

Check out this cool animation/video of Tropical Storm Bill is running into Texas, courtesy of NASA!!

This movie of GOES-East satellite imagery shows Tropical Storm Bill developing on June 14 and 15 to its landfall along the southeastern Texas coast on June 16. Credit: NASA/NOAA GOES Project

Jurassic World break records – Anthony Martin explains what we would need to create it in real life!! @US_Conversation

Beyond dinosaurs, what would we need to create a Jurassic World?

Anthony J Martin, Emory University

Like many moviegoers this summer, I plan to watch Jurassic World. And because I’m a paleontologist, I’ll cheer for the movie’s protagonists (the dinosaurs) and jeer at the villains (the humans).

But no matter how thrilling this movie may be, one question will plague me throughout: where are the dung beetles?

Dung beetles – which are beetles that eat and breed in dung – would be only one of many ecological necessities for an actual Jurassic World-style theme park.

Yes, cloning long-extinct dinosaurs is impossible. But even if dinosaur genomes were available, the animals couldn’t simply be plopped anywhere.

So for the sake of argument, let’s say an extremely wealthy corporation did manage to create a diverse bunch of dinosaurs in a laboratory.

The next step in building a Mesozoic version of Busch Gardens would be figuring out how to recreate – and maintain – the dinosaurs’ ecosystems. Accomplishing this goal would require a huge team of scientists, consisting (at minimum) of paleontologists, geologists, ecologists, botanists, zoologists, soil scientists, biochemists and microbiologists.

Such a team then would have to take into account countless interacting factors for the dinosaurs’ recreated habitats. And perhaps they could take a page from rewilding efforts that are currently taking place throughout the world.

The issue of food

In a memorable scene from the original Jurassic Park, paleobotanist Dr Ellie Sattler examines an impressive heap of an ill Triceratops’s feces to look for digested remains of a toxic plant.

In the original Jurassic Park, a dinosaur becomes sick after eating a toxic plant.

Here, the filmmakers touched on a key challenge for recreating an environment from a different geologic period. Many modern plants have evolved defenses against herbivores, which include toxins that can swiftly impair any animal that hasn’t adapted to them.

Consequently, a time-traveling Triceratops would be taking a big risk with every visit to its local salad bar. Paleobotanists could try to solve this problem by cataloging fossil plants that lived at the same time as plant-eating dinosaurs, before picking out descendants of those plants that are still around today. Still, plant lists will never be good enough to say whether or not a Triceratops, Stegosaurus or Brachiosaurus ate those plants or if they could eat their descendants.

The same might hold true for carnivorous dinosaurs, which – for all we know – may have been picky eaters. For instance, although some Triceratops bones hold tooth traces of Tyrannosaurus, there’s no way to be sure a genetically engineered Tyrannosaurus would eat an equally inauthentic Triceratops (even if it were organic and free-range).

So despite a century of dinosaur flicks portraying tyrannosaurs and other predatory dinosaurs gratuitously munching humans, one bite of our species – or other sizable mammals – might make them sick. In other words, there’s no accounting for taste.

Animals that do the dirty work

The lack of dung beetles in that same scene with Dr Sattler also may have explained why the Triceratops’s feces were piled so high. We know from fossil burrows in dinosaur coprolites (fossil feces) that dung beetles fed on dinosaur droppings at least 75 million years ago. Similarly, Late Jurassic dinosaur bones from nearly 150 million years ago hold the traces of carcass-eating insects.

Dung beetles cleaned up after the dinosaurs.
Kay-africa/Wikimedia Commons, CC BY-SA

This makes sense: wastes, bodies and other forms of stored matter and energy must be recycled in functioning modern ecosystems. Accordingly, to maintain the productivity of these dinosaurs’ ecosystems, animals that perform essential services to the ecosystem would need to be introduced.

These include pollinators, such as bees, beetles and butterflies, as well as seed dispersers, like birds and small tree- and ground-dwelling mammals. Thus Masrani Global – the imaginary corporation tasked with creating Jurassic World – should have added entomologists (insect scientists), ornithologists and mammalogists to the career opportunities page on its mock website.

‘Pleistocene Parks’ a realistic possibility?

Can we learn anything useful from such fanciful reconstructing of long-gone ecosystems, where large animals once roamed? Sure.

In so-called “rewilding” projects, imagination meets real science. These projects, which attempt to restore ecosystems by closely mimicking their previous iterations, often include reintroducing locally extinct animals.

Perhaps the most famous and successful of such rewilding projects began just after the release of the original Jurassic Park.

In 1995, wolves were reintroduced to Yellowstone National Park. Although admittedly not as exciting as releasing a pack of velociraptors into the woods, the reintroduction of wolves – which had been extirpated from the area earlier in the 20th century – had a dramatic restorative effect.

After the wolves gorged on elk – which, without predators, had overpopulated the region – riverine foliage grew more lushly. This prevented erosion and expanded floodplains, which gave beavers a better habitat to get to work damming rivers.

A similar experiment is taking place in Europe, where increased numbers of large carnivores, such as wolves, bears and lynxes, are reshaping their ecosystems closer to their original states.

Bolstered by these successes, rewilding proponents have even proposed reintroducing elephants, lions, cheetahs and other animals to parts of North America as ecological proxies to mammoths, American lions and American “cheetahs” that lived only a little more than 10,000 years ago in those areas.

Large animals from the Pleistocene Epoch.
Public Library of Science/Wikimedia Commons, CC BY

Given the much shorter elapsed time since their extinction, enough similar species today and no need for genetic engineering, a “Pleistocene Park” – Pleistocene being the geological epoch that was about 2.5 million to 11,700 years ago – would be far easier to achieve than a Jurassic World (while also being more alliterative).

So to any corporations out there that are thinking of making such a park, do us a big favor: whatever you do, don’t forget to include dung beetles.

The Conversation

Anthony J Martin is Professor of Practice at Emory University.

This article was originally published on The Conversation.
Read the original article.

Can your birth month predict disease risk? – Interesting new computational study!! – and VIDEO!

Columbia University scientists have developed a computational method to investigate the relationship between birth month and disease risk. The researchers used this algorithm to examine New York City medical databases and found 55 diseases that correlated with the season of birth. Overall, the study indicated people born in May had the lowest disease risk, and those born in October the highest.