NIH will NOT fund research involving gene-editing technology in human embryos #drama

From the NIH directors blog, Francis Collins just issued a statement on the NIH stance toward gene editing on human embryos:

NIH will not fund any use of gene-editing technologies in human embryos. The concept of altering the human germline in embryos for clinical purposes has been debated over many years from many different perspectives, and has been viewed almost universally as a line that should not be crossed. Advances in technology have given us an elegant new way of carrying out genome editing, but the strong arguments against engaging in this activity remain. These include the serious and unquantifiable safety issues, ethical issues presented by altering the germline in a way that affects the next generation without their consent, and a current lack of compelling medical applications justifying the use of CRISPR/Cas9 in embryos.

This comes in response to a Chinese group who has used the CRISPR/Cas9 system to delete a gene from human embryos that causes a fatal blood disorder.  There has been quite a bit of controversy on this new technique, which has led to the developers of the CRISPR/Cas9 system to call for a moratorium. Read the full statement from the NIH director here.

CauseScience would love to hear your thoughts on this new technology! Do we need to control the usage of this gene editing technology? Are scientists pushing the technology too fast without considering ethical implications? Is gene editing ethical?   Comment or tweet @CauseScience1

The science of the Sad and Devastating Nepal Earthquake – explained by Mike Sandiford and Kristin Morell @ConversationEDU

The science behind the Nepal earthquake

Mike Sandiford, University of Melbourne; CP Rajendran, Jawaharlal Nehru Centre for Advanced Scientific Research, and Kristin Morell, University of Victoria

Saturday’s Nepal earthquake has destroyed housing in Kathmandu, damaged World Heritage sites, and triggered deadly avalanches around Mount Everest. The death toll is already reported as being in the many thousands. Given past experience, it would not surprise if it were to reach the many tens of thousands when everyone is accounted for.

Nepal is particularly prone to earthquakes. It sits on the boundary of two massive tectonic plates – the Indo-Australian and Asian plates. It is the collision of these plates that has produced the Himalaya mountains, and with them, earthquakes.

Our research in the Himalaya is beginning to shed light on these massive processes, and understand the threat they pose to local people.

The science of earthquakes

The April 25 quake measured 7.8 on the moment magnitude scale, the largest since the 1934 Bihar quake, which measured 8.2 and killed around 10,000 people. Another quake in Kashmir in 2005, measuring 7.6, killed around 80,000 people.

These quakes are a dramatic manifestation of the ongoing convergence between the Indo-Australian and Asian tectonic plates that has progressively built the Himalayas over the last 50 million years.

They are but one reminder of the hazards faced by the communities that live in these mountains. Other ongoing hazards include floods and monsoonal landslides, as exemplified by the Kedarnath disaster of 2013 which killed more than 5,000 people.

Earthquakes occur when strain builds up in Earth’s crust until it gives way, usually along old fault lines. In this case the strain is built by the collision or convergence of two plates.

There are a number of factors made this quake a recipe for catastrophe. It was shallow: an estimated 15km below the surface at the quake’s epicentre. It saw a large movement of the earth (a maximum of 3m). And the ruptured part of the fault plane extended under a densely populated area in Kathmandu.

From the preliminary analysis of the seismic records we already know that the rupture initiated in an area about 70km north west of Kathmandu, with slip on a shallow dipping fault that gets deeper as you move further north.

Over about a minute, the rupture propagated east by some 130km and south by around 60km, breaking a fault segment some 15,000 square kilometres in area, with as much as 3m slip in places.

The plates across this segment of the Himalaya are converging at a rate of about 2cm this year. This slip released the equivalent of about a century of built up strain.

Predicting quakes

While the occurrence of large earthquakes in this region is not unexpected, the seismological community still has little useful understanding of how to predict the specific details of such ruptures. While the statistical character of earthquake sequences is well understood, we are still unable to predict individual events.

Questions as to why such a large earthquake, in this specific location at this time, and not elsewhere along the Himalaya, continue to baffle the research community, and make for problematic challenge of better targeted hazard preparedness and mitigation strategies.

But with each new quake researchers are gaining valuable new insights. As exemplified by the ready availability of quality data and analysis in near real time provided by organisations such as the United States Geological Survey and Geoscience Australia, the global network of geophysical monitoring is providing an ever more detailed picture of how the earth beneath or feet is behaving.

Seismic gaps

New techniques are also helping us read the record of past earthquakes with ever greater accuracy. Our research collaboration – involving the University of Melbourne, the Jawaharlal Nehru Centre for Advanced Scientific Research and the Indian Institute of Science in India, the University of Victoria in Canada, and the Bhutan Government – is studying the earthquake geology of adjacent areas of the Himalaya in the state of Uttarakhand in India and in Bhutan.

Together we are mapping indicators of tectonic activity that link the earthquake time-scale (from seconds to decades) to the geological time-scale (hundred of thousands to millions of years).

Using new digital topography datasets, new ways of dating landscape features and by harnessing the rapidly growing power of computer simulation, we have been able to show how large historical ruptures and earthquakes correlate with segmentation of the Himalayan front reflected in its geological makeup.

This is shedding new light on so-called seismic gaps, where the absence of large historical ruptures makes for very significant concern. You can read our latest research here.

The most prominent segment of the Himalayan front not to have ruptured in a major earthquake during the last 200–500 years, the 700-km-long “central seismic gap” in Uttarakhand, is home more than 10 million people. It is crucial to understand if it is overdue for a great earthquake.

Our work in Uttarakhand and elsewhere is revealing how the rupture lengths and magnitude of Himalayan quakes is controlled by long-lived geological structures. While little comfort to those dealing with the aftermath of Saturday’s tragedy, it is part if a growing effort from the international research community to better understand earthquakes and so help mitigate the impact of future events.

Funded as part of the Australian Indian Strategic Research Fund and DFAT aid programs, our collaborative work is a reflection of the commitment of our governments to international earthquake research.

The Conversation

This article was originally published on The Conversation.
Read the original article.

Healthy eating, not exercise, should be the main argument to fight obesity

From the BBC, doctors are saying that physical activity has little role in tackling obesity – and instead public health messages should squarely focus on unhealthy eating.

In an editorial in the British Journal of Sports Medicine, three international experts said it was time to “bust the myth” about exercise.

They said while activity was a key part of staving off diseases such as diabetes, heart disease and dementia, its impact on obesity was minimal.

Instead excess sugar and carbohydrates were key.

The experts, including London cardiologist Dr Aseem Malhotra, blamed the food industry for encouraging the belief that exercise could counteract the impact of unhealthy eating.

Dr Malhotra said: “An obese person does not need to do one iota of exercise to lose weight, they just need to eat less. My biggest concern is that the messaging that is coming to the public suggests you can eat what you like as long as you exercise.

“That is unscientific and wrong. You cannot outrun a bad diet.”

Read the full article here.

More controversy in the CRISPR/Cas9 debate. Editing DNA in human embryos: Good or Bad idea?

As mentioned previously, a moratorium has been called on the new gene editing technique using the CRISPR/Cas9 system due to ethical concerns over altering genes.  Essentially, biologists fear that this technique will be used in cilinical applications before the safety can be determined and ALSO are worried about ethical issues surrounding the technique of editing genes.

In light of all this, a new controversy has surfaced following the publication in Protein & Cell of work from Chinese scientists who essentially tried to delete a gene from human embryos that causes a fatal blood disorder. While the CRISPR/Cas9 system definitely has potential, the work from this group clearly shows that their current method of gene editing has several off target effects and is absolutely not ready for any sort of clinical trial.

NPR summarizes the whole ordeal:

For the first time, scientists have edited DNA in human embryos, a highly controversial step long considered off limits.

Junjiu Huang and his colleagues at the Sun Yat-sen University in Guangzhou, China, performed a series of experiments involving 86 human embryos to see if they could make changes in a gene known as HBB, which causes the sometimes fatal blood disorder beta-thalassemia.

The report, in the journal Protein & Cell, was immediately condemned by other scientists and watchdog groups, who argue the research is unsafe, premature and raises disturbing ethical concerns.

“No researcher should have the moral warrant to flout the globally widespread policy agreement against modifying the human germline,” Marcy Darnovsky of the Center for Genetics and Society, a watchdog group, wrote in an email to Shots. “This paper demonstrates the enormous safety risks that any such attempt would entail, and underlines the urgency of working to forestall other such efforts. The social dangers of creating genetically modified human beings cannot be overstated.”

George Daley, a stem cell researcher at Harvard, agreed.

“Their data reinforces the wisdom of the calls for a moratorium on any clinical practice of embryo gene editing, because current methods are too inefficient and unsafe,” he wrote in an email. “Further, there needs to be careful consideration not only of the safety but also of the social and ethical implications of applying this technology to alter our germ lines.”

Scientists have been able to manipulate DNA for years. But it’s long been considered taboo to make changes in the DNA in a human egg, sperm or embryo because those changes could become a permanent part of the human genetic blueprint. One concern is that it would be unsafe: Scientists could make a mistake, which could introduce a new disease that would be passed down for generations. And there’s also fears it this could lead to socially troubling developments, such as “designer babies,” in which parents can pick and choose the traits of their children.

The Chinese researchers say they tried this to try to refine a new technique called CRISPR/Cas9, which many scientists are excited about it because it makes it much easier to edit DNA. The procedure could enable scientists to do all sorts of things, including possibly preventing and curing diseases. So the Chinese scientists tried using CRISPR/Cas9 to fix a gene known as the HBB gene, which causes beta thallasemia.

The work was done on 86 very early embryos that weren’t viable, in order to minimize some of the ethical concerns. Only 71 of the embryos survived, and just 28 were successfully edited. But the process also frequently created unintended mutations in the embryos’ DNA.

“Taken together, our data underscore the need to more comprehensively understand the mechanisms of CRISPR/Cas9-mediated genome editing in human cells, and support the notion that clinical applications of the CRISPR system may be premature at this stage,” the Chinese scientists wrote.

Rumors about this research have been circulating for weeks, prompting several prominent groups of scientists to publish appeals for a moratorium on doing this sort of thing.

In the wake of the report from the Chinese scientists, several of these researchers reiterated their call for a moratorium. Some said they hoped the difficulties that Huang and his colleagues encountered might discourage other scientists from attempting anything similar.

“The study simply underscores the point that the technology is not ready for clinical application in the human germline,” Jennifer Doudna, the University of California, Berkeley, scientist who developed CRISPR, wrote in an email. “And that application of the technology needs to be on hold pending a broader societal discussion of the scientific and ethical issues surrounding such use.”

But there are already reports that Huang’s group and possibly others in China continue to try editing the genes in human embryos.

“We should brace for a wave of these papers, and I worry that if one is published with a more positive spin, it might prompt some IVF clinics to start practicing it, which in my opinion would be grossly premature and dangerous,” Daley says.

What do YOU think about the CRISPR/Cas9 technology? Should a moratorium be placed? Does the technology show promise for curing disease in the future? Or is this whole thing unethical? Share your opinions in the comments or tweet at us @CauseScience1.

Happy 25th Birthday Hubble Telescope! – Celebrate with 25 amazing images and #science!!!

25 Images Celebrating 25 Years of Hubble

This year marks 25 years of amazing images and science from the Hubble Space Telescope.  To celebrate, we’ve assemble 25 images that represent both the beauty of the universe captured by Hubble and the important science realized by this wonderful telescope orbiting over our heads.

Flight to Star Cluster Westerlund 2

This visualization provides a three-dimensional perspective on Hubble’s 25th anniversary image of the nebula Gum 29 with the star cluster Westerlund 2 at its core. The flight traverses the foreground stars and approaches the lower left rim of the nebula Gum 29. Passing through the wispy darker clouds on the near side, the journey reveals bright gas illuminated by the intense radiation of the newly formed stars of cluster Westerlund 2. Within the nebula, several pillars of dark, dense gas are being shaped by the energetic light and strong stellar winds from the brilliant cluster of thousands of stars. Note that the visualization is intended to be a scientifically reasonable interpretation and that distances within the model are significantly compressed.

Credit: NASA, ESA, G. Bacon, L. Frattare, Z. Levay, and F. Summers (Viz3D Team, STScI), and J. Anderson (STScI)

Acknowledgment: The Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), the Westerlund 2 Science Team, and ESO

World Immunization Week 2015 #GetVaccinated

Progress towards global vaccination targets for 2015 is far off-track with 1 in 5 children still missing out on routine life-saving immunizations that could avert 1.5 million deaths each year from preventable diseases. In the lead-up to World Immunization Week 2015 (24–30 April), WHO is calling for renewed efforts to get progress back on course. Read more.

We’ve discussed the importance of vaccination about a billion times on this blog.  World Immunization Week brings to light how important vaccination is for global health!